Manu Gaur

Research Assistant, IIIT-Hyderabad

🤳 +91 9811899789 🌐 manugaurdl.github.io 🛛 manugaurwork@gmail.com

EDUCATION

Delhi Technological University, India	08/2019 - 05/2023
B.Tech in Applied Physics (GPA: 8.5/10)	

Experience

IIIT Hyderabad, India Research Assistant with Dr. Makarand Tapaswi	09/2023 - Present
Amazon Research, India International ML Team Applied Scientist Intern with Dr. Vinay Kumar Verma	02/2023 - 07/2023
University of Technology Sydney , <i>Remote</i> <i>Research Intern</i> with Dr. Mukesh Prasad	01/2022 - 01/2023
Delhi Technological University , <i>India</i> Research Intern (Bachelor Thesis) with Dr. Dinesh Kumar Vishwakarma	09/2022 - 05/2023
Taaza , India Machine Learning Intern with Mr. Sandeep Raheja	06/2022 - 07/2022

PUBLICATIONS

[1]	No Detail Left Behind: Revisiting Self-Retrieval for Fine-Grained Image Captioning 🖓 Manu Gaur, Darshan Singh S, Makarand Tapaswi	
	Transactions on Machine Learning Research, 2024	Arxiv Website
[2]	Detect, Describe, Discriminate: Moving Beyond VQA for MLLM Evaluation (7) Manu Gaur, Darshan Singh S, Makarand Tapaswi	
	ECCV 2024 Workshop on Emergent Visual Abilities and Limits of Foundation Models	Arxiv Website
[3]	Self-Supervised Ensembled Learning for Autism Spectrum Classification. <u>Manu Gaur</u> , Kunal Chaturvedi, Dinesh Kumar Vishwakarma, Mukesh Prasad <i>Journal of Research in Autism Spectrum Disorders, Elsevier, 2023</i>	ScienceDirect
]	FEATURED PROJECTS	
	Towards More Compositional VLMs using Diffusion	07/2024 – Present
	Advisors: Dr. Makarand Tapaswi	IIIT Hyderabad
ŕ	* Investigating DDPM's effectiveness in aligning pure vision and text embedding spaces.	
1	* Training a Denoising Diffusion Model to translate between embedding spaces of CLIP and I	DINO.
,	* Extracted classifiers from pretrained diffusion models to investigate CLIP's compositional un	nderstanding.
(Guiding MLLMs with Policy Gradients 🜎	12/2023 - 01/2024
	Advisors: Dr. Makarand Tapaswi	IIIT Hyderabad
,	* Reproduced ClipCap's (a simple MLLM) captioning performance via next-token prediction t	raining on COCO.

- * Maximized different rewards (CIDEr, SR) with REINFORCE for better retrieval and captioning performance.
- * Both model and optimization code *written from scratch* in PyTorch.

* Learnt shape-invariant, yet style-variant representations through self-distillation of visually compatible items. * Employed Triplet loss with hard negatives using color, occasion, gender and product information.

* Implemented a non-contrastive region-matching objective for improved perfromance and faster convergence.

Label-Efficient ADHD Classification using 4D rs-fMRI

Advisors: Dr. Dinesh Kumar Vishwakarma

- * Reduced redundant features within adjacent frames by sampling across different temporal neighbourhoods.
- * Self-supervised visual features are learnt using self-distillation across multiple views.
- * Transformer models temporal relations across the time-series of spatial features and optimizes cross-entropy.

Constrained Vehicle Routing Optimization

Advisors: Mr. Sandeep Raheja

- * Worked on vehicle routing problem with pickup/delivery services and time constraints for a NEMT client.
- * Implemented pointer network and stored geocoding data with geometry projections and spatial references.
- * Extended PostGIS database to provide geospatial routing and other functionalities using pgRouting library.

FEATURED POSITIONS

Machine Learning Summer School, Amazon Computer Vision and AI Summer School, CVIT, IIIT-H Reviewer: CVPR'24

TECHNICAL SKILLS

Languages: Python, Java, C, MATLAB, SQL(Postgres) Frameworks: Pytorch, DGL Tensorflow/Keras, PostGis

FEATURED COURSEWORK

Mathetmatics: Probability and Statistics (5th Sem., DTU); MIT RES-6-012: Intro. to Probability; MIT-OCW: Linear Algebra; Mathetmatics for ML (Imperial College London); Computational Methods (4th Sem., DTU) **Programming:** Algorithms I and II (4th Sem., DTU); Database Management Systems (6th Sem., DTU) Machine Learning: Machine Learning (5th Sem., DTU); Deep Learning Specialization (Deeplearning.ai); Introduction to Reinforcement Learning (University College London) **Computer Vision:** Computer Vision (8th Sem., DTU); CS231n: DL for Computer Vision (Stanford University); Introduction to Self-Driving Cars, State Estimation and Localization (University of Toronto);

Contextualized Visual Compatibility with GNNs

Advisors: Dr. Vinay Kumar Verma, Prateek Sircar

- Trained GNNs to model visual compatibility between fashion items based on aesthetics. *
- * Curated Fashion and Furnishing datasets, each with 5.3M and 8.2M compatible groups of segmented images.
- * GNN encoder generates contextualized multimodal product embeddings by conditioning on compatible items.
- * During inference, relational information captured by GNN is encoded in new nodes through similarity edges.

Self-Supervised Learning for Modelling Fashion Compatibility

Advisors: Dr. Vinay Kumar Verma

December 20, 2024

03/2023 - 04/2023 Amazon Research

09/2022 - 03/2023

Delhi Technological University

06/2022 - 07/2022 Taaza

07/2022 07/2022 - 08/2022